

PEX/PISO-P32x32/x64

Series Board User Manual

Isolation Digital Input/Output Boards

Version 4.5, Jun. 2015

SUPPORT

This manual relates to the followsing boards: PEX-P32C32, PISO-P32C32, PISO-P32C32U, PISO-P32C32U-5V, PEX-P32A32, PISO-P32A32, PISO-P32A32U-5V, PISO-P32A32U, PISO-P32S32WU, PEX-C64, PISO-C64, PISO-C64U, PEX-P64, PISO-P64, PISO-P64U, PISO-P64U-24V and PISO-A64

WARRANTY

All products manufactured by ICP DAS are warranted against defective materials for a period of one year from the date of delivery to the original purchaser.

WARNING

ICP DAS assumes no liability for damages consequent to the use of this product. ICP DAS reserves the right to change this manual at any time without notice. The information furnished by ICP DAS is believed to be accurate and reliable. However, no responsibility is assumed by ICP DAS for its use, nor for any infringements of patents or other rights of third parties resulting from its use.

COPYRIGHT

Copyright © 2015 by ICP DAS. All rights are reserved.

TRADEMARKS

Names are used for identification purposes only and may be registered trademarks of their respective companies.

CONTACT US

If you have any question, feel to contact us by email at: Email: service@icpdas.com or service@icpdas@gmail.com We will respond to you within 2 working days.

TABLE OF CONTENTS

PAC	PACKING LIST			
1.	INT	RODUCTION		
	11	FEATURES 8		
-	1.1	SPECIFICATIONS		
-	1.2.1	PEX/PISO-P32C32 Series		
	1.2.2	PEX/PISO-P32A32 Series		
	1.2.3	PISO-P32S32WU Series		
	1.2.4	PEX/PISO-C64 Series		
	1.2.5	PISO-A64 Series		
	1.2.6	PEX/PISO-P64 Series		
2	НЛБ			
2.	11AI			
2	2.1	BOARD LAYOUT		
	2.1.1	PEX/PISO-P32C32/P32A32 Series		
	2.1.2	PISO-P32S32WU		
	2.1.3	PEX/PISO-P64 Series		
	2.1.4	PEX/PISO-C64 and PISO-A64 Series		
2	2.2	Card ID Switch (SW1)		
2	2.3	ISOLATED DI ARCHITECTURE		
	2.3.1	Internal Power Supply (Default)		
	2.3.2	External Power Supply		
2	2.4	ISOLATED DO ARCHITECTURE		
	2.4.1	Current Sinking		
	2.4.2	Current Sourcing		
	2.4.3	Open Collector Wiring Notice		
2	2.5	PIN ASSIGNMENTS		
	2.5.1	PEX/PISO-P32C32 and PEX/PISO-P32A32 Series		
	2.5.2	PISO-P32S32WU		
	2.5.3	PEX/PISO-P64 Series		
	2.5.4	PEX/PISO-C64 and PISO-A64 Series		
3.	HAF	RDWARE INSTALLATION		
4.	SOF	TWARE INSTALLATION		
,	1 1			
2	T. 1			

4.2	PNP DRIVER INSTALLATION	
4.3	VERIFYING THE INSTALLATION	
4.3.1	Accessing Windows Device Manager	
4.3.2	Check the Installation	
5. TES	TING THE PEX/PISO-P32X32/X64 BOARD	46
5.1	Self-Test Wiring	
5.1.1	PEX-P32C32 and PISO-P32C32 Series	
5.1.2	PEX-P32A32 and PISO-P32A32 Series	
5.1.3	PISO-P32S32WU Series	
5.1.4	PEX/PISO-P64 Series	
5.1.5	PEX/PISO-C64 Series	
5.1.6	PISO-A64 Series	
5.2	Execute the Test Program	
5.2.1	PEX/PISO-P32C32, PEX/PISO-P32A32 and PISO-P32S32WU Series	
5.2.2	PEX/PISO-P64 Series	
5.2.3	PEX/PISO-C64 and PISO-A64 Series	
6. I/O	CONTROL REGISTER	60
6.1	How to Find the I/O Address	
6.1.1	PIO_DriverInit	
6.1.2	PIO_GetConfigAddressSpace	
6.1.3	Show_PIO_PISO	
6.2	The Assignment of I/O Address	
6.3	ENABLING I/O OPERATION	71
6.4	The I/O Address Map	
6.4.1	I/O Mapping for the PISO-P32x32 Series	
6.4.2	I/O Mapping for the PISO-P64 Series	
6.4.3	I/O Mapping for the PISO-C64/A64 Series	
6.4.4	RESET\ Control Register	
6.4.5	AUX Control Register	
6.4.6	AUX Data Register	
6.4.7	INT Mask Control Register	
6.4.8	AUX Status Register	
7. THE	DIGITAL I/O APPLICATIONS	79
7.1	PISO-P32x32 Series Board	
7.1.1	The Circuit Diagram of Digital Output	
7.1.2	The Circuit Diagram of Digital Input	

7.2	PEX/PISO-P64 Series			
7.2.1	1 The Circuit Diagram of Digital Input			
7.3	PEX/PISO-C64 and PISO-A64 Series			
7.3.1	1 The Circuit Diagram of Digital Output			
8. DEM	MO PROGRAM	94		
APPENDIX	APPENDIX: DAUGHTER BOARD			
A1. [DB-37			
A2. [DN-37			
A3. [DB-8125			

Packing List

The shipping package includes the following items:

	One PEX/PISO-P32x32/x64 Series board as follows:			
	PEX Series	PEX-P32C32, PEX-P32A32, PEX-P64, PEX-C64		
[—	PISO-P32C32 Series:	PISO-P32C32U, PISO-P32C32U-5V, PISO-P32C32,		
	PISO-P32A32 Series:	PISO-P32A32U, PISO-P32A32U-5V, PISO-P32A32		
		PISO-P32S32WU		
	PISO-C64/A64 Series:	PISO-C64, PISO-C64U, PISO-A64		
	PISO-P64 Series:	PISO-P64, PISO-P64U, PISO-P64U-24V		
	One printed Quick Start	Guide		
RT MA	One software utility CD			
	Two CA-4002 D-Sub Cor One CA-4037B Cable	inects		

Note:

If any of these items is missing or damaged, contact the dealer from whom you purchased the product. Save the shipping materials and carton in case you need to ship or store the product in the future.

1. Introduction

Comparison Table

Madal			D/I		D/O Channels		
Name	Bus	Channels	Input Voltage	Low Drive	High Drive	Туре	
PISO-P32S32WU	Universal PCI	32	Logic 1: 9 ~ 24 V	24-ch	8-ch	Current Sink, NPN	
PEX-P32C32	PCI Express	32	Logic 1: 9 ~ 24 V	32-ch	-	Current Sink, NPN	
PISO-P32C32U-5V	Universal PCI	32	Logic 1: 5 ~ 12 V	32-ch	-	Current Sink, NPN	
PISO-P32C32U	Universal PCI	32	Logic 1: 9 ~ 24 V	32-ch	-	Current Sink, NPN	
PISO-P32C32	5 V PCI	32	Logic 1: 9 ~ 24 V	32-ch	-	Current Sink, NPN	
PEX-P32A32	PCI Express	32	Logic 1: 9 ~ 24 V	32-ch	-	Current Source, PNP	
PISO-P32A32U	Universal PCI	32	Logic 1: 9 ~ 24 V	32-ch	-	Current Source, PNP	
PISO-P32A32U-5V	5 V PCI	32	Logic 1: 5 ~ 12 V	32-ch	-	Current Source, PNP	
PISO-P32A32	5 V PCI	32	Logic 1: 9 ~ 24 V	32-ch	-	Current Source, PNP	
PEX-P64	PCI Express	64	Logic 1: 5 ~ 24 V	-	-	-	
PISO-P64U	Universal PCI	64	Logic 1: 5 ~ 24 V	-	-	-	
PISO-P64U-24V	Universal PCI	64	Logic 1: 20 ~ 28 V	-	-	-	
PISO-P64	5 V PCI	64	Logic 1: 5 ~ 24 V	-	-	-	
PEX-C64	PCI Express	-	-	64-ch	-	Current Sink, NPN	
PISO-C64U	Universal PCI	-	-	64-ch	-	Current Sink, NPN	
PISO-C64	5 V PCI	-	-	64-ch	-	Current Sink, NPN	
PISO-A64	5 V PCI	-	-	64-ch	-	Current Source, PNP	

General Description

The PISO-P32C32/P32A32/P64/C64/A64 series board supports +5 V PCI bus. The PISO-P32C32U/P32A32U/P32S32WU/P64U/C64U universal PCI board supports +3.3 V and +5 V PCI bus. The PEX-P32C32/P32A32/P64/C64 supports PCI Express bus.

These boards provide 32 or 64 optically-isolated Digital Input and/or Output channel, arranged into four isolated banks. Each input channel use a photo-coupler input which allows either internal isolated power supply or external power selected by jumper.

Each Digital Output offers a PNP transistor (P32A32/A64 Series) or Darlington transistor (P32C32/P32S32WU/C64 Series) and integral suppression diode for inductive load. The power supply of the input port may use the external power or the power from the PC side using DC/DC converter. The power supply of the output port should use the external power. This interface board is easily installed in any PC. The board interface to field logic signals, eliminating ground-loop problems and isolating the host computer from damaging voltages. The P32A32/P32C32/P32S32WU/P64/A64/C64 series boards have one 37-pin D-Sub connector and one 40-pin male header. The 40-pin to DB-37 flat-cable is used to fix with the case.

These boards support various OS versions, such as Linux, DOS, Windows 98/NT/2000 and 32/64-bit Windows 8/7/Vista/XP. DLL and Active X control together with various language sample programs based on Turbo C++, Borland C++, Microsoft C++, Visual C++, Borland Delphi, Borland C++ Builder, Visual Basic, C#.NET, Visual Basic.NET and LabVIEW are provided in order to help users quickly and easily develop their own applications.

1.1 Features

> Interface:

- Supports the +5 V PCI bus for PISO-P32A32/P32C32/P64/C64/A64.
- Supports the +3.3 V/+5 V PCI bus for PISO-P32A32U/P32C32U/P32S32WU/P64U/C64U.
- Supports PCI Express x 1 for PEX-P32C32/P32A32/P64/C64.
- Card ID function (SMD Switch) for PEX-P32C32/P32A32/P64/C64 and PISO-P32C32U/P32A32U/P32S32WU/P64U/C64U.

> Digital Input:

- 32 optically-isolated Digital Input channels for PISO-P32A32/P32C32/P32S32WU and PEX-P32C32/P32A32.
- 64 optically-isolated Digital Input channels for PEX-P64 and PISO-P64.

> Digital Output:

- 32 optically-isolated open collector output channels, as follow:
 - Current Sink (NPN) for PEX-P32C32 and PISO-P32C32
 - Current Source (PNP) for PEX-P32A32 and PISO-P32A32
 - Current Sink (NPN), 500 mA (8-ch) high driving and 100 mA (24-ch) driving for PISO-P32S32WU
- 64 optically-isolated DO, as follow:
 - Current Sink (NPN) for PEX-C64 and PISO-C64
 - Current Source (PNP) for PISO-A64
- Output status readback for PEX-P32C32/P32A32/C64 and PISO-P32C32U/P32A32U/C64U.

Isolated Protection:

- Built-in DC/DC converter providing 3000 V_{DC} isolation for PEX-P32C32/P32A32/P64 and PISO-P32C32U/P32A32U/P64U.
- 3750 V_{rms} photo-isolated protection.

1.2 Specifications

1.2.1 PEX/PISO-P32C32 Series

Model Name	PEX-P32C32	PISO-P32C32	PISO-P32C32U	PISO-P32C32U-5V		
Digital Input						
Isolation Voltage	3750 Vrms (Using e	xternal power)				
Channels	32					
Compatibility	Sink or Source,					
Compatibility	Photo coupler isola	ted channel with co	ommon power or gro	und		
	Logic 0: 0 ~ 1 V			Logic 0: 0 ~ 1 V		
Input Voltago	Logic 1: 9 ~ 24 V			Logic 1: 5 ~ 12 V		
input voitage	(Logic 1: Min. 7 V; N	/lax. 30 V)		(Logic 1: Min. 3.5 V;		
				Max. 16 V)		
Input Impedance	3 KΩ, 0.5 W					
Response Speed	4 kHz (Typical)					
Digital Output						
Isolation Voltage	3750 Vrms	3750 Vrms				
Channels	32					
Compatibility	Sink, Open Collector					
Output Capability	100 mA/+30 V for one channel @ 100% duty					
Response Speed	4 kHz (Typical)					
General						
	PCI Express x1	5 V PCI, 32-bit, 33				
Bus Type		MHz	3.3 V/5 V Univers	al PCI, 32-bit 33 MHz		
Data Bus	8-bit	·				
Card ID	Yes (4-bit)	No	Yes (4-bit) for ver	sion 1.1 or above		
	Female DB37 x 1,					
I/O Connector	40-pin box header x 1					
Dimensions						
(L x W x D)	180 mm x 105 mm x 22 mm					
Power Consumption	600 mA @ +5 V					
Operating Temperature	0 ~ 60 °C					
Storage Temperature	-20 ~ 70 °C					
Humidity	5 ~ 85% RH, non-co	ndensing				

1.2.2 PEX/PISO-P32A32 Series

Model Name	PEX-P32A32	PISO-P32A32U	PISO-P32A32U-5V	PISO-P32A32	
Digital Input					
Isolation Voltage	3750 Vrms (Using	g external power)			
Channels	32				
Compatibility	Photo coupler iso	plated			
	Logic 0: 0 ~ 1 V Logic 0: 0 ~ 1 V		Logic 0: 0 ~ 1 V	Logic 0: 0 ~ 1 V	
Input Valtage	Logic 1: 9 ~ 24 V		Logic 1: 5 ~ 12 V	Logic 1: 9 ~ 24 V	
input voitage	(Logic 1: Min. 7 V; Max. 30 V)		(Logic 1: Min. 3.5 V;	(Logic 1: Min. 7 V;	
			Max. 16 V)	Max. 30 V)	
D/I Power	External		Internal/External	External	
Input Impedance	3 KΩ, 0.5 W				
Response Speed	4 kHz (Typical)				
Digital Output					
Isolation Voltage	3750 Vrms				
Channels	32				
Compatibility	Source, Open Collector				
Output Capability	100 mA/+30 V for one channel @ 100% duty				
Response Speed	4 kHz (Typical)				
General					
		3.3 V/5 V Universal	3.3 V/5 V Universal	5 V PCI, 32-bit, 33	
Bus Type	PCI Express x1	PCI, 32-bit 33 MHz	PCI, 32-bit 33 MHz	MHz	
Data Bus	8-bit				
Card ID	Yes(4-bit) No				
	Female DB37 x 1,				
I/O Connector	40-pin box header x 1				
Dimensions (L x W x D)	180 mm x 105 mm x 22 mm				
Power Consumption	600 mA @ +5 V				
Operating Temperature	0 ~ 60 °C				
Storage Temperature	-20 ~ 70 °C				
Humidity	5 ~ 85% RH, non-condensing				

1.2.3 PISO-P32S32WU Series

Model Name	PISO-P32S32WU		
Digital Input			
Isolation Voltage	3750 Vrms (Using external power)		
Channels	32		
Compatibility	Photo coupler isolated		
Input Voltago	Logic 0: 0 ~ 1 V		
	Logic 1: 9 ~ 24 V		
Input Impedance	3 ΚΩ, 0.5 W		
Response Speed	4 kHz (Typical)		
Digital Output			
Isolation Voltage	3750 Vrms		
Channels	32		
Compatibility	Sink, Open Collector		
	500 mA for one high driving channel @ 100% duty		
	500 mA for all high driving channels @ 100% duty		
Output Capability	(The GND pins all must be connected with GND of External Power)		
	100 mA for one low driving channel @ 100% duty		
	100 mA for all low driving channels @ 100% duty		
	(The GND pins all must be connected with GND of External Power)		
Response Speed	4 kHz (Typical)		
General			
Bus Type	3.3 V/5 V Universal PCI, 32-bit 33 MHz		
Data Bus	8-bit		
Card ID	Yes(4-bit) for version 1.5 or above		
	Female DB37 x 1,		
I/O Connector	40-pin box header x 1		
Dimensions (L x W x D)	180 mm x 105 mm x 22 mm		
Power Consumption	600 mA @ +5 V		
Operating Temperature	0 ~ 60 °C		
Storage Temperature	-20 ~ 70 °C		
Humidity	5 ~ 85% RH, non-condensing		

1.2.4 PEX/PISO-C64 Series

Model Name	PEX-C64	PISO-C64U	PISO-C64		
Digital Output					
Isolation Voltage	3750 Vrms				
Channels	64				
Compatibility	Sink, Open Collector				
Output Capability	100 mA/+30 V for one cha	nnel @ 60% duty			
Response Speed	4 kHz (Typical)				
General					
Rus Tupo		3.3 V/5 V Universal PCI,	5 V PCI, 32-bit 33 MHz		
виз туре	PCI Express X1	32-bit 33 MHz			
Data Bus	8-bit				
Card ID	Yes(4-bit)	No			
I/O Connector	Female DB37 x 1, 40-pin box header x 1				
Dimensions (L x W x D)	180 mm x 105 mm x 22 mm				
Power Consumption	800 mA @ +5 V				
Operating Temperature	0 ~ 60 °C				
Storage Temperature	-20 ~ 70 °C				
Humidity	5 ~ 85% RH, non-condensi	ng			

1.2.5 PISO-A64 Series

Model Name	PISO-A64	
Digital Output		
Isolation Voltage	3750 Vrms	
Channels	64	
Compatibility	Source, Open Collector	
Output Capability	100 mA/+30 V for one channel @ 60% duty	
Response Speed	4 kHz (Typical)	
General		
Bus Type	5 V PCI, 32-bit 33 MHz	
Data Bus	8-bit	
Card ID	No	
I/O Connector	Female DB37 x 1, 40-pin box header x 1	
Dimensions (L x W x D)	180 mm x 105 mm x 22 mm	
Power Consumption	800 mA @ +5 V	
Operating Temperature	0 ~ 60 °C	
Storage Temperature	-20 ~ 70 °C	
Humidity	5 ~ 85% RH, non-condensing	

1.2.6 PEX/PISO-P64 Series

Model Name	PEX-P64	PISO-P64U	PISO-P64U-24V	PISO-P64	
Digital Input					
Isolation Voltage	3750 Vrms (Using e	external power)			
Channels	64				
Compatibility	Photo coupler isola	ited			
	Logic 0: 0~1 V	Logic 0: 0~1 V	Logic 0: 0~1 V	Logic 0: 0~1 V	
Input Voltage	Logic 1: 5~15 V	Logic 1: 5~15 V	Logic 1: 20~28 V	Logic 1: 5~24 V	
		(24 V max.)	(30 max.)		
Input Impedance	1.2 KΩ, 1 W				
Response Speed	4 kHz (Typical)				
General					
		3.3 V/5 V Universal PCI, 32-bit 33 MHz		5 V PCI, 32-bit,	
Bus Type	PCI Express x1			33 MHz	
Data Bus	8-bit				
Card ID	Yes(4-bit) No				
	Female DB37 x 1,				
I/O Connector	40-pin box header x 1				
Dimensions (L x W x D)	180 mm x 105 mm x 22 mm				
Power Consumption	400 mA @ +5 V				
Operating Temperature	0 ~ 60 °C				
Storage Temperature	-20 ~ 70 °C				
Humidity	5 ~ 85% RH, non-co	ondensing			

2. Hardware Configuration

2.1 Board Layout

2.1.1 PEX/PISO-P32C32/P32A32 Series

The following is an overview of the board layout for each of the PISO-P32C32/P32A32 and PISO-P32C32U(-5V)/P32A32U(-5V).

The following is an overview of the board layout for each of the PEX-P32C32/P32A32.

Internal/External Power Selection (JP1/JP2)				
Internal Power	External Power (Default)			

	Power Indicator		
LED	PISO-P32C32/P32A32	PISO-P32C32U/P32A32U	PEX-P32C32/P32A32
	Rev 4.0 and prior	Rev 4.1 and later	
LED1	DO<015>	DI<015>	DI<0 15>
LED2	DI<015>	DO<015>	DO<015>
LED3	DO<1631>	DI<163 1>	DI<1631>
LED4	DI<1631>	DO<1631>	DO<1631>

Jumper	Internal/External Power	
JP1	DI<015> (3000 V isolation)	
JP2	DI<1631> (3000 V isolation)	

Isolation Bank	DO Channel	Power	Ground
Isolation Bank 1	DI<015>	(CON1, Pin18)	(CON1, Pin19)
Isolation Bank 2	DO<015>	(CON1, Pin37)	(CON1, Pin1 & 20)
Isolation Bank 3	DI<1631>	(CON2, Pin18)	(CON2, Pin19)
Isolation Bank 4	DO<1631>	(CON2, Pin37)	(CON2, Pin1 & 20)

- 1. All four banks are fully isolated from each other when using four isolated external power supplies.
- 2. For detailed information about the SW1 switch (Card ID function), please refer to <u>Sec. 2.2.</u>

2.1.2 PISO-P32S32WU

The following is an overview of the board layout for each of the PISO-P32S32WU.

Card ID Jumper Setting (JP5)				
Device 0 (Default)Device 1Device 2Device 3				

Isolation Bank	DI/DO Channel	Power	Ground
Isolation Bank 1	DI <015>		(CON1,Pin1)
Inclution Doub 2	DO <03> High drive for 500 mA sink current, NPN	(CON1,Pin37)	(CON1,Pin18/Pin19)
Isolation Bank 2	DO <415> Low drive for 100 mA sink current, NPN		(CON1,Pin1/Pin20)
Isolation Bank 3	DI<1631>		(CON2,Pin1)
Isolation Bank 4	DO<1619> High drive for 500 mA sink current, NPN	(CON2,Pin37)	(CON2,Pin18/Pin19)
	DO<2031> Low drive for 100 mA sink current, NPN		(CON2,Pin1/Pin20)

Note: To prevent the board damaged forever by overload, the GND pins (CON1: pin 1/18/19/20, CON2: pin 1/18/19/20) all must be connected with GND of External Power.

2.1.3 PEX/PISO-P64 Series

The following is an overview of the board layout for each of the PISO-P64(U).

The following is an overview of the board layout for each of the PEX-P64.

Internal/External Power Selection (J1/J2/J3/J4)		
Internal Power	External Power (Default)	

LED	Power Indicator
LED1	DI<015>
LED2	DI<1631>
LED3	DI<3247>
LED4	DI<4863>

Jumper	Internal/External Power
J1	DI<015> (3000 V isolation)
J2	DI<1631> (3000 V isolation)
J3	DI<3247> (3000 V isolation)
J4	DI<4863> (3000 V isolation)

Isolation Bank	DO Channel	Power	Ground
Isolation Bank 1	DI<015>	(CON1, Pin18)	(CON1, Pin1)
Isolation Bank 2	DI<1631>	(CON1, Pin37)	(CON1, Pin20)
Isolation Bank 3	DI<3247>	(CON2, Pin18)	(CON2, Pin1)
Isolation Bank 4	DI<4863>	(CON2, Pin37)	(CON2, Pin20)

- 1. The DC/DC1 provides the internal power supply for banks 1 and 2.
- 2. The DC/DC2 provides the internal power supply for banks 3 and 4.
- 3. All four banks are fully isolated from each other when using four isolated external power supplies.
- 4. For detailed information about the SW1 switch (Card ID function), please refer to Sec. 2.2.

2.1.4 PEX/PISO-C64 and PISO-A64 Series

The following is an overview of the board layout for each of the PISO-C64(U)/A64.

The following is an overview of the board layout for each of the PEX-C64.

LED	Power Indicator
LED1	DO<015>
LED2	DO<1631>
LED3	DO<3247>
LED4	DO<4863>

Isolation Bank	DO Channel	Power	Ground
Isolation Bank 1	DO<015>	(CON1, Pin18)	(CON1, Pin1)
Isolation Bank 2	DO<1631>	(CON1, Pin37)	(CON1, Pin20)
Isolation Bank 3	DO<3247>	(CON2, Pin18)	(CON2, Pin1)
Isolation Bank 4	DO<4863>	(CON2, Pin37)	(CON2, Pin20)

1. All four banks are fully isolated from each other when using four isolated external power supplies.

2. For detailed information about the SW1 switch (Card ID function), please refer to Sec. 2.2.

2.2 Card ID Switch (SW1)

ID 0

The PEX-P32C32/P32A32/P64/C64 and PISO-P32C32U/P32A32U/P64U/C64U includes an onboard Card ID switch (SW1) that enables the board to be recognized via software if two or more boards are installed in the same computer. The default Card ID is 0x0. For more details regarding the SW1 Card ID settings, refer to the table below.

	NO	
SW1		
ID 1 ID 2 ID 3		
		3

(Default Settings)

Card ID (Hex)	1	2	3	4
	ID0	ID1	ID2	ID3
(*) 0x0	ON	ON	ON	ON
0x1	OFF	ON	ON	ON
0x2	ON	OFF	ON	ON
0x3	OFF	OFF	ON	ON
0x4	ON	ON	OFF	ON
0x5	OFF	ON	OFF	ON
0x6	ON	OFF	OFF	ON
0x7	OFF	OFF	OFF	ON
0x8	ON	ON	ON	OFF
0x9	OFF	ON	ON	OFF
0xA	ON	OFF	ON	OFF
ОхВ	OFF	OFF	ON	OFF
0xC	ON	ON	OFF	OFF
0xD	OFF	ON	OFF	OFF
OxE	ON	OFF	OFF	OFF
0xF	OFF	OFF	OFF	OFF

(*) Default Settings; OFF \rightarrow 1; ON \rightarrow 0

2.3 Isolated DI Architecture

The DI architecture of the PEX-P32C32/P32A32/P64 and PISO-P32C32/P32A32/P32S32WU/P64 series boards is the same. Select either internal or external power to supply photo-couple Digital Input power. The PISO-P32S32WU only supports external power mode. Here are diagrams for the various configurations:

2.3.1 Internal Power Supply (Default)

Isolated DI architecture with internal power supply

Typical applications of DI with internal power supply

2.3.2 External Power Supply

Isolated DI architecture with external power supply

Typical applications of DI with external power supply

2.4 Isolated DO Architecture

Here are block diagrams related to the DO:

2.4.1 Current Sinking

Isolated DO architecture (Sink, NPN)

Typical applications of DO (Sink, NPN)

PEX-P32C32/PISO-P32C32(U)

PEX-C64/PISO-C64(U)

R=10K Out

-₩/

(-) GND

2.4.2 Current Sourcing

Isolated DO architecture (Source, PNP)

Typical applications of DO (Source, PNP)

- The PEX-P32C32/P32A32/C64 and PISO-P32C32/P32A32/C64/A64 series boards, I1 to I32 (I64) must be < 100 mA. The PISO-P32S32WU, I1 to I4 and I17 to I20 must be < 500 mA, the other must be < 100 mA.
- The PEX-P32C32/P32A32/C64 and PISO-P32C32/P32S32WU/P32A32/C64/A64 series boards, R1 to R32 (R64) are current-limit resistors. They must be designed to let I1 to I32 <100 mA. The PISO-P32S32WU, I1 to I4 and I17 to I20 < 500 mA.
- 3. If the internal resistance of the external device is large enough, the R can be omitted.
- 4. D1 to D31 are common-cathode diodes for switching inductive loads. They can be used as relay drivers, hammer drivers, lamp drivers, display drivers, line drivers and logic buffers.

User Manual, Ver. 4.5, Jun. 2015, PMH-0001-45 Page: 27

Notes:

<u>High Drive Channel:</u> Open Collector n-channel Power FET (BPS75N). Max. Sink Current is 500 mA for each channel.

Low Drive Channel: Open Collector NPN/PNP Transistor. Max. Sink Current is 100 mA for each channel.

(Recommend: It is necessary to connect a diode in the external device end as means of preventing damage form the counter emf. If your external device is inductive load, Ex. Relay, etc.)

2.5 Pin Assignments

2.5.1 PEX/PISO-P32C32 and PEX/PISO-P32A32 Series

Pin Assign- ment	Pin Assign- ment	Te		No.	Pin Assign- ment	Pin Assign- ment		Pin Assign- ment	Terminal No.				Pin Assign- ment	
CON2	CON1				CON1	CON2		EXT. GND1	01	0	0	02	EXT. GND1	
EXT. GND1	EXT. GND0	01		20	EXT. GND0	EXT. GND1		DI_16	03	0	0	04	DO_16	
DI_16	DI_0	02		21		DO 16		DI_17	05	0	0	06	DO_17	
DI_17	DI_1	03		21	DO 1	DO_{17}		DI_18	07	0	0	08	DO_18	
DI_18	DI_2	04		22		DO_{1}		DI_19	09	0	0	10	DO_19	
DI_19	DI_3	05	• •	23	DO_2	DO_10		DI_20	13			14	DO_20	
DI_20	DI_4	06	• •	24	DO_3	DO_19		DI_21	15	0	0	16	DO_21	
DI_21	DI_5	07	• •	25	D0_4	DO_20		DI 23	17	40	ŏ	18	DO 23	
DI_22	DI 6	08	•	26	DO_5	DO_21		DI_24	19	0	0	20	DO_24	
DI 23	DI 7	09	•	27	DO_6	DO_22		DI_25	21	40	0	22	DO_25	
DI 24	DI 8	10		28	DO_7	DO_23		DI_26	23	0	0	24	DO_26	
DI 25	DI 9	11		29	DO_8	DO_24		DI_27	25	0	0	26	DO_27	
DI 26	DI 10	12		30	DO_9	DO_25		DI_28	27	0	0	28	DO_28	
DI 27	DI 11	13		31	DO_10	DO_26		DI_29	29	0	0	30	DO_29	
DI 29	DI_11	14		32	DO_11	DO_27		DI_30	31			32	DO_30	
DI_20	DI_12	14	•••	33	DO_12	DO_28		ECOM1	35			36	EVT DWD1	
DI_29	DI_13	15	••	34	DO_13	DO_29		IGND1	37	0	0	38	N/A	
DI_30	DI_14	16	•	35	DO_14	DO_30		N/A	39	ō	õ	40	N/A	
DI_31	DI_15	1/		36	DO_15	DO_31								
ECOM1	ECOM0	18		37	EXT. PWR0	EXT. PWR1		COI	CON2 (40-pin box header)					
IGND1	IGND0	19	07											
											4			
								Fxten	sion (able	- (C/	4-40-	37B):	
CON1/CON2 (Female DB-37)								DB-40	-Pin c	onv	ersi	on D	B-37-Pin	

2.5.2 PISO-P32S32WU

Pin Assign- ment	Pin Assign- ment	Te		No.	Pin Assign- ment	Pin Assign- ment		Pin Assign- ment	Te	ermii	nal N	lo.	Pin Assign- ment
CON2	CON1				CON1	CON2		DO EXT GND(-)	01	0	0	02	DO EXT GND(-)
DO EXT GND(-)	DO EXT GND(-)	01		20		DO EXT GND(-)		DI_16	03	0	0	04	DO16 for high drive
DI_16	DI_0	02		20	DO EAT GIVD(-)	DO16 for high drive		DI_17	05	0	0	06	DO17 for high drive
DI_17	DI_1	03		21	DOU for high drive	DO10 for high drive		DI_18	07	0	0	08	DO18 for high drive
DI_18	DI_2	04		22	DOI for high drive	DO17 for high drive		DI_19	09	0	0	10	DO19 for high drive
DI 19	DI 3	05	•	23	DO2 for high drive	DO18 for high drive		DI_20	11	0	0	12	DO_20
DI 20	DI 4	06	•	24	DO3 for high drive	DO19 for high drive		DI_21	15		0	14	DO_21
DI 21	DI 5	07	•	25	DO_4	DO_20		DI_22	17	Lo	0	18	DO_22
DI 22	DI 6	08	•	26	DO_5	DO_21		DI 24	19	0	0	20	DO 24
DI 23		09		27	DO_6	DO_22		DI_25	21	20	0	22	DO_25
DI 24		10		28	DO_7	DO_23		DI_26	23	0	0	24	DO_26
		11		29	DO_8	DO_24		DI_27	25	0	0	26	DO_27
DI_25	DI_9	11		30	DO_9	DO_25		DI_28	27	0	0	28	DO_28
DI_20	DI_10	12		31	DO_10	DO_26		DI_29	29	0	0	30	DO_29
DI_2/	DI_11	13		32	DO_11	DO_27		DI_30	31	0	0	32	DO_30
DI_28	DI_12	14	••	33	DO_12	DO_28		CND for High drive	33	0	0	34	DO_31
DI_29	DI_13	15	•	34	DO_13	DO_29		GND for High drive	35		0	38	
DI_30	DI_14	16		35	DO 14	DO_30		N/A	39		0	40	N/A
DI_31	DI_15	17		36	DO 15	DO 31							
GND for High drive	GND for High drive	18		37	DO EXT POWER(+)	DO EXT POWER(+)		CON	12 (40)-pir	1 box	k head	der)
GND for High drive	GND for High drive	19	07										
	С	ON1/C	CON2 (Fe	emale D	DB-37)			Exter DB-4	nsion 0-Pin	Cab cor	ole (nver	CA-4 sion	037B): DB-37-Pin

2.5.3 PEX/PISO-P64 Series

Pin Assign- ment	Pin Assign- ment	Te	rminal I	No.	Pin Assign- ment	Pin Assign- ment		Pin Assign- ment	Terminal No.				Pin Assign- ment
CON2	CON1				CON1	CON2		DI 32-47(-)	01	0	0	02	DI 48-63(-)
DI 32-47	EXT Power GND(-) DI 0-15	01		20	EXT Power GND(-)	EXT Power GND(-)		DI_32	03	0	0	04	DI_48
DI_32	DI_0	02		21	DI 16-31	DI 48-63		DI_33	05	0	0	06	DI_49
DI_33	DI_1	03		21	DI 17			DI_34	07	0	0	08	DI_50
DI_34	DI_2	04		22	DI_17	DI_49		DI_35	11	0	0	10	DI_51
DI_35	DI_3	05		23	DI_10	DI_50		DI_30	11		0	14	DI_52
DI 36	DI 4	06	•	24	DI_19	DI_51		DI 38	15		0	16	DI_53
DI 37	DI 5	07	•	25	DI_20	DI_52		DI 39	17	40	0	18	DI 55
DI 38	DI 6	08	•	26	DI_21	DI_53		DI_40	19	0	0	20	DI_56
DI 39	DI 7	09	•	27	DI_22	DI_54		DI_41	21	6	0	22	DI_57
DI 40	DI 8	10		28	DO_23	DI_55		DI_42	23	0	0	24	DI_58
DI_10		11		29	DI_24	DI_56		DI_43	25	0	0	26	DI_59
	DI_9	12		30	DI_25	DI_57		DI_44	27	0	0	28	DI_60
DI_42	DI_10	12		31	DI_26	DI_58		DI_45	29	0	0	30	DI_61
DI_43	DI_II	13		32	DI_27	DI_59		DI_46	31	0	0	32	DI_62
DI_44	DI_12	14	••	33	DI_28	DI_60		DI_47	33	0	0	34	DI_03
DI_45	DI_13	15	•	34	DI_29	DI 61		N C	37		0	38	N C
DI_46	DI_14	16		35	DI 30	DI 62		N.C.	39	0	0	40	N.C.
DI_47	DI_15	17		36	DI 31	DI 63		ine.	00	<u> </u>	<u> </u>	10	, iii ci
Ext Power(+) 32-47	Ext Power(+) 0-15	18		37	EXT POWER(+) 16-31	EXT POWER(+) 48-63		CON	12 (40)-pir	box	head	der)
N.C.	N.C.	19	07	0,									
			M										
								Evto	ncio	י ר ר י	hle	((),_/	103781.
	C	ON1 (Female	DB-37)				DB-4	40-Pi	n co	nve	rsion	DB-37-Pir

2.5.4 PEX/PISO-C64 and PISO-A64 Series

Pin Assign- ment	Pin Assign- ment	Те		No.	Pin Assign- ment	Pin Assign- ment	Pin Assign- ment	Terminal No.				Pin Assign- ment
CON2	CON1				CON1	CON2	DO 32-47(-)	01	0	0	02	DO 48-63(-)
EXT Power GND(-) DO 32-47	EXT Power GND(-) DO 0-15	01		20	EXT Power GND(-)	EXT Power GND(-)	DO_32	03	0	0	04	DO_48
DO_32	DO_0	02		21	DO 16-31	DO 48-63	DO_33	05	0	0	06	DO_49
DO_33	DO_1	03		21	DO_10		DO_34	07	0	0	08	DO_50
DO_34	DO_2	04		22	DO_17	DO_49	DO_35	11	0	0	10	DO_51
DO_35	DO_3	05		23	DO_10	DO_50	DO_30	13		0	12	DO_52
DO_36	DO 4	06	•	24	DO_19	DO_51	DO_38	15		0	16	DO_55
DO 37	DO 5	07	•	25	DO_20	DO_52	DO 39	17	40	õ	18	DO 55
DO 38	DO 6	08	•	26	DO_21	DO_53	DO_40	19	0	0	20	DO_56
DO 39	DO 7	09	•	27	DO_22	DO_54	DO_41	21	90	0	22	DO_57
DO 40	DO 8	10	•	28	DO_23	DO_55	DO_42	23	0	0	24	DO_58
DO 41		11		29	DO_24	DO_56	DO_43	25	0	0	26	DO_59
DO 42	DO 10	12		30	DO_25	DO_57	DO_44	27	0	0	28	DO_60
DO_42	DO_10	12		31	DO_26	DO_58	DO_45	29	0	0	30	DO_61
DO_43	DO_11	13		32	DO_27	DO_59	DO_46	31		0	32	DO_62
DO_44	DO_12	14		33	DO_28	DO_60	DO_{-47}	35		0	36	DO_03
DO_45	DO_13	15		34	DO_29	DO_61	N.C.	37	0	0	38	N.C.
DO_46	DO_14	16		35	DO_30	DO_62	N.C.	39	0	0	40	N.C.
DO_4/	DO_15	1/	••	36	DO_31	DO 63						
Ext Power(+) 32-47	Ext Power(+) 0-15	18		37	EXT POWER(+) 16-31	 EXT POWER(+) 48-63	CO	12 (40)-pir) po>	(head	der)
N.C.	N.C.	19	0								/	
											, 	
			U				Evton	sion (Cah		·^_/0	37B).
	C	ON1 (Female	DB-37)			DB-40)-Pin	con	vers	ion D)B-37-Pin

3. Hardware Installation

Note:

It is recommended that the driver is installed before installing the hardware as the computer may need to be restarted once the driver is installed in certain operating systems, such as Windows 2000 or Windows XP, etc. Installing the driver first helps reduce the time required for installation and restarting the computer.

To install your PEX/PISO-P32x32/x64 Series board, complete the following steps:

Step 1: Install the driver for your board on Host computer.

For detailed information about the driver installation, please refer to <u>Chapter 4 Software</u> <u>Installation.</u>

Step 2: Configure the Card ID using the DIP Switch (SW1).

For detailed information about the card ID (SW1), please refer to <u>Section 2.2 Car ID Switch (SW1)</u>.

Note: The card ID function only supports PEX-P32C32, PEX-P32A32, PEX-P64(-24V), PEX-C64, PISO-P32C32U(-5V), PISO-P32A32U(-5V), PISO-P64U(-24V) and PISO-C64U.

Step 3: Shut down and switch off the power to the computer, and then disconnect the power supply.

Step 4: Remove the cover from the computer.

Step 5: Select a vacant PCI/PCI Express slot.

User Manual, Ver. 4.5, Jun. 2015, PMH-0001-45 Page: 34

Step 8: Carefully insert your board into the PCI/PCI Express slot by gently pushing down on both sides of the board until it slides into the PCI connector.

User Manual, Ver. 4.5, Jun. 2015, PMH-0001-45 Page: 35

Step 10: Replace the covers on the computer.

Step 11: Re-attach any cables, insert the power cord and then switch on the power to the computer.

Once the computer reboots, follow any message prompts that may be displayed to complete the Plug and Play installation procedure. Refer to <u>Chapter 4 Software Installation</u> for more information.
4. Software Installation

This chapter provides a detailed description of the process for installing the driver for the PEX/PISO-P32x32/x64 Series board as well as how to verify whether your board was properly installed. PEX/PISO-P32x32/x64 Series can be used on DOS, Linux and Windows 98/NT/2000 and 32/64-bit versions of Windows XP/2003/2008/7/8 based systems, and the drivers are fully Plug and Play compliant for easy installation.

4.1 Obtaining/Installing the Driver Installer Package

The driver installation package for PEX/PISO-P32x32/x64 Series board can be found on the companion CD-ROM, or can be obtained from the ICP DAS FTP web site. Install the appropriate driver for your operating system. The location and website addresses for the installation package are indicated below.

Operating System	Windows 2000, 32/64-bit Windows XP, 32/64-bit Windows 2003, 32/64-bit Windows 7, 32/64-bit Windows 2008, and 32/64-bit Windows 8
Driver Name	UniDAQ Driver/SDK (unidaq_win_setup_xxxx.exe)
CD-ROM	CD:\\ NAPDOS\PCI\UniDAQ\DLL\Driver\
Web site	http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidaq/dll/driver/
Installing Procedure	To install the UniDAQ driver, follow the procedure described below. Step 1: Double-click the UniDAQ_Win_Setupxxx.exe icon to begin the installation process.

UniDAQ Driver/SDK

	Step 2: When the "Welcome to the ICP DAS UniDAQ Driver Setup Wizard" screen is displayed, click the " <u>Next></u> " button to start the installation.
	Step 3: On the "Information" screen, verify that the DAQ board is included in the list of supported devices, then click the " <u>N</u> ext>" button.
	Step 4: On the "Select Destination Location" screen, click the " <u>N</u> ext>" button to install the software in the default folder, C:\ICPDAS\UniDAQ.
	Step 5: On the "Select Components" screen, verify that the DAQ board is in the list of device, and then click the " <u>Next></u> " button to continue.
Installation Procedure	Step 6: On the "Select Additional Tasks" screen, click the "<u>N</u>ext>" button to continue.
	Step 7: On the "Download Information" screen, click the "<u>N</u>ext>" button to continue.
	Step 8: Once the installation has completed, click "No, I will restart my computer later" , and then click the "<u>F</u>inish" button.
	For more detailed information about how to install the UniDAQ driver, refer to "Section 2.2 Install UniDAQ Driver DLL" of the UniDAQ Software Manual, which can be found in the \NAPDOS\PCI\UniDAQ\Manual\ folder on the companion CD, or can be downloaded from: <u>http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/unidaq/manual/</u>

PISO-DIO Series Classic Driver

> Operating System	Windows 95/98/ME, Windows NT, Windows 2000, 32-bit Windows XP, 32-bit Windows 2003, 32-bit Windows Vista, 32-bit Windows 7 and 32-bit Windows 8
Driver Name	PISO-DIO Series Classic Driver (PISO-DIO_win_xxxx.exe)
CD-ROM	CD:\\NAPDOS\PCI\PISO-DIO\DLL_OXC\Driver\
Web site	http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/piso-dio/dll_ocx/driver/
	Please follow the following steps to setup software: Step 1: Double click the PISO-DIO Series Classic Driver to setup it.
	 Step 2: When the Setup Wizard screen is displayed, click the <u>Next></u> button. Step 3: Select the folder where the drivers are to install. The default path is C:\DAQPro\PISO-DIO. But if you wish to install the drivers to a different location , click the "Browse" button and select the relevant folder and then click the <u>Next></u> button.
Installing Procedure	 Step 4: Click the Install button to continue. Step 5: Select the item "No, I will restart my computer later", press the <u>Finish</u> button.
	For detailed information about how to install the PISO-DIO Classic Driver, refer to the PISO-DIO Series Classic Driver DLL Software, which can be found in the \NAPDOS\PCI\PISO-DIO\Manual\ folder on the companion CD, or can be downloaded from: <u>http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/piso-dio/manual/</u>

4.2 **PnP Driver Installation**

Step 1: Correctly shut down and power off your computer and disconnect the power supply, and then install your board into the computer.

For detailed information about the hardware installation of PEX/PISO-P32x32/x64 Series board, please refer to <u>Chapter 3 Hardware Installation</u>.

Step 2: Power on the computer and complete the Plug and Play installation.

Note: More recent operating systems, such as Windows 7/8 will automatically detect the new hardware and install the necessary drivers etc., so Steps 3 to 5 can be skipped.

Step 4: Click the "Finish" button.

Found New Hardware Wizard	
Please wait while the wizard installs the software	
UmDAQFISO-F32C32 Isolated Digital I/O Board	
😥 🥤 📂 Found New Hard	are Wizard
Setting a system restore point and backing up old files in case your system needs to be restored in the future.	Completing the Found New Hardware Wizard
<back next=""></back>	The wizard has finished installing the software for:
	UniDAQ]PISO-P32C32 Isolated Digital I/O Board Click Finish to close the wizard.
	< Back Finish Cancel

Step 5: Windows pops up **"Found New Hardware"** dialog box again.

Jser Manual, Ver. 4.5, Jun. 2015, PMH-0001-45 Page: 41

4.3 Verifying the Installation

To verify that the driver was correctly installed, use the Windows **Device Manager** to view and update the device drivers installed on the computer, and to ensure that the hardware is operating correctly. The following is a description of how access the Device Manager in each of the major versions of Windows. Refer to the appropriate description for the specific operating system to verify the installation.

4.3.1 Accessing Windows Device Manager

Windows 95/98/ME

Step 1: Either right-click the **"My Computer"** icon on the desktop and then click **"Properties"**, or open the **"Control Panel"** and double-click the **"System"** icon to open the System Properties dialog box.

Step 2: In the System Properties dialog box, click the "Device Manager" tab.

Windows 2000/XP

- Step 1: Click the "Start" button and then point to "Settings" and click "Control Panel".Double-click the "System" icon to open the "System Properties" dialog box.
- **Step 2:** Click the "Hardware" tab and then click the "<u>Device Manager</u>" button.

Windows Server 2003

Step 1: Click the **"Start"** button and point to **"Administrative Tools"**, and then click the **"Computer Management"** option.

Step 2: Expand the "System Tools" item in the console tree, and then click "Device Manager".

Windows Vista/7

Step 1: Click the "Start" button, and then click "Control Panel".
Step 2: Click "System and Maintenance", and then click "Device Manager".

Alternatively,

Step 1: Click the "Start" button.Step 2: In the Search field, typeDevice Manager and then pressEnter.

Control Panel (3)	
🚔 Device Manager	
low devices and printers	
🚔 Update device drivers	
₽ See more results	
device manager ×	Shut down 🕨
	🦻 🙋 🏒

Note that Administrator privileges are required for this operation. If you are prompted for an administrator password or confirmation, enter the password or provide confirmation by clicking the "Yes" button in the User Account Control message.

Windows 8

Step 1: To display the Start screen icon from the desktop view, hover the mouse cursor over the bottom-left corner of screen.
Step 2: Right-click the Start screen icon and then click "Device Manager".

Alternatively, press [Windows Key] +[X] to open the Start Menu, and then select Device Manager from the options list.

4.3.2 Check the Installation

Check that the PEX/PISO-P32x32/x64 Series board is correctly listed in the Device Manager, as illustrated below.

5. Testing the PEX/PISO-P32x32/x64 Board

This chapter provides detailed information about the "Self-Test" process, which is used to confirm that the PEX/PISO-P32x32/x64 Series board is operating correctly. Before beginning the "Self-Test" process, ensure that both the hardware and driver installation procedures are fully completed. For detailed information about the hardware and driver installation, refer to <u>Chapter 3 Hardware</u> Installation and <u>Chapter 4 Software Installation</u>.

5.1 Self-Test Wiring

The following is a description of how to configure the wiring in order to perform the "Self-Test" procedures for the Digital Input or/and Digital Output. Refer to the appropriate descriptions for PEX/PISO-P32x32/x64 Series boards in Sections 5.1.1 to 5.1.6 for more detailed information.

Before beginning the "Self-Test" procedure, ensure that the following items are available:

☑ A CA-3710 Cable
 (Optional, Website: <u>http://www.icpdas.com/products/Accessories/cable_cable_selection.htm</u>)

 A DN-37 Terminal Board
 (Optional, Website: <u>http://www.icpdas.com/root/product/solutions/pc_based_io_board/daughter_boards/dn-37.html</u>)

 ☑ An External power supply device, such as the DP-665
 (Optional, Website: http://www.icpdas.com/root/product/solutions/accessories/power_supply/dp-665.html)

5.1.1 PEX-P32C32 and PISO-P32C32 Series

- **Step 1:** Connect the DN-37 to the CON1 connector on your board using the CA-3710 cable.
- Step 2: Keep set the JP1 jumper to External Power (For more details regarding the JP1 jumper settings, refer to the Section 2.1.1)
- Step 3: Connect the DI<0...15> (Pin2...17) on the terminal board to DO<0...15> (pin21...36). (i.e., Connect the DI0 (Pin2) to DO0 (Pin21) ... Connect the DI15 (Pin17) to DO15 (Pin36))

> The External Power Wiring for PEX-P32C32/PISO-P32C32(U):

Step 4: Connect the External Power Supply (+24 V) to ECOM0 (Pin18) and EXT.PWR0 (Pin37). Step 5: Connect the External Power Supply GND to IGND0 (Pin19) and EXT.GND0 (Pin1/Pin20).

Notes: The PEX-P32C32/PISO-P32C32(U) suggests input voltage range as follow: Logic high: +9 ~ +24 V; (Higher voltage over the limitation will cause the hardware damage.)

The External Power Wiring for PISO-P32C32U-5V:

Step 4: Connect the External Power Supply (+5 V) to ECOM0 (Pin18) and EXT.PWR0 (Pin37).
Step 5: Connect the External Power Supply GND to IGND0 (Pin19) and EXT.GND0 (Pin1/Pin20).

Note: The PISO-P32C32U-5V suggests input voltage range as follow: <u>Logic high: +5 ~ +12 V</u>; (Higher voltage over the limitation will cause the hardware damage.)

5.1.2 PEX-P32A32 and PISO-P32A32 Series

- **Step 1:** Connect the DN-37 to the CON1 connector on your board using the CA-3710 cable.
- **Step 2:** Keep set the **JP1 jumper to External Power** (For more details regarding the JP1 jumper settings, refer to the <u>Section 2.1.1</u>)
- Step 3: Connect the DI<0...15> (Pin2...17) on the terminal board to DO<0...15> (pin21...36). (i.e., Connect the DIO (Pin2) to DOO (Pin21) ... Connect the DI15 (Pin17) to DO15 (Pin36))

> The External Power Wiring for PEX-P32A32/PISO-P32A32(U) Series:

Step 4: Connect the External Power Supply (+24 V) to EXT.PWR0 (Pin37).

Step 5: Connect the External Power Supply GND to ECOM0 (Pin18) and EXT.GND0 (Pin1/Pin20).

Notes: The PEX-P32A32/PISO-P32A32(U) suggests input voltage range as follow: Logic high: +9 ~ +24 V; (Higher voltage over the limitation will cause the hardware damage.)

> The External Power Wiring for PISO-P32A32U-5V:

Step 4: Connect the External Power Supply (+5 V) to EXT.PWR0 (Pin37). Step 5: Connect the External Power Supply GND to ECOM0 (Pin18) and EXT.GND0 (Pin1/Pin20).

Note: The PISO-P32A32U-5V suggests input voltage range as follow: Logic high: +5 ~ +12 V; (Higher voltage over the limitation will cause the hardware damage.)

5.1.3 PISO-P32S32WU Series

- **Step 1:** Connect the DN-37 to the CON1 connector on your board using the CA-3710 cable.
- Step 2: Connect the DI<0...15> (Pin2...17) on the terminal board to DO<0...15> (pin21...36).
 - (i.e., Connect the DIO (Pin2) to DOO (Pin21) ... Connect the DI15 (Pin17) to DO15 (Pin36))
- Step 3: Connect the External Power Supply (+24 V) to DO EXT POWER(+) (Pin37).
- Step 4: Connect the External Power Supply GND to EXT GND (-) (Pin1/Pin20) and GND for High Driver (Pin18/Pin19).

5.1.4 PEX/PISO-P64 Series

Step 1: Connect the DN-37 to the CON1 connector on your board using the CA-3710 cable.

Step 2: Keep set the J1 jumper to External Power.

(For more details regarding the J1 jumper settings, refer to the Section 2.1.3)

> The External Power Wiring for PEX-P64/PISO-P64(U) Series:

Step 3: Connect the Ext. Power GND(-) DI: 0-15(-) (Pin1) on the terminal board to DI7 (Pin9). Step 4: Connect the External Power Supply GND to Ext. Power GND(-) DI: 0-15(-) (Pin1).

Step 5: Connect the External Power Supply (+5 V) to Ext. Power(+) DI: 0-15(+) (Pin18).

Note: The PEX-P64/PISO-P64(U) suggests input voltage range as follow: <u>Logic high: +5 ~ +15 V</u>; (Higher voltage over the limitation will cause the hardware damage.)

> The External Power Wiring for PEX-P64-24V/PISO-P64U-24V Series:

Step 3: Connect the Ext. Power GND(-) DI: 0-15(-) (Pin1) on the terminal board to DI7 (Pin9).
Step 4: Connect the External Power Supply GND to Ext. Power GND(-) DI: 0-15(-) (Pin1).
Step 5: Connect the External Power Supply (+24 V) to Ext. Power(+) DI: 0-15(+) (Pin18).

Note: The PEX-P64-24V/PISO-P64U-24V suggests input voltage range as follow: Logic high: +20 ~ +28 V; (Higher voltage over the limitation will cause the hardware damage.)

5.1.5 PEX/PISO-C64 Series

Step 1: Connect the DN-37 to the CON1 connector on your board using the CA-3710 cable.

Step 2: Use output LED to connect the DO2 (Pin4) and Ext. Power(+) 0-15 (Pin18).

Step 3: Connect the External Power Supply (+24 V) to Ext. Power(+) 0-15 (Pin18).

Step 4: Connect the External Power Supply GND to Ext. Power GND(-) DO 0-15(-) (Pin1).

Note: For detailed information about the **wiring note and pin assignments**, refer to <u>Section 2.4</u> and <u>Section 2.5.4</u>).

5.1.6 PISO-A64 Series

Step 1: Connect the DN-37 to the CON1 connector on your board using the CA-3710 cable.
Step 2: Use output LED to connect the DO2 (Pin4) and Ext. Power GND(-) DO 0-15(-) (Pin1).
Step 4: Connect the External Power Supply GND to Ext. Power GND(-) DO 0-15(-) (Pin1).
Step 3: Connect the External Power Supply (+24 V) to Ext. Power(+) 0-15 (Pin18).

5.2 Execute the Test Program

Step 1: In Windows 7, click the "Start" button, point to "All Programs", and then click the "ICPDAS" folder. Point to "UniDAQ
Development Kits" and then click the "UniDAQ Utility" to execute the UniDAQ Utility Program.

Step 2: Confirm that your board has been successfully installed in the Host system. Note that the device numbers start from 0.

Step 3: Click the "TEST" button to start the test.

Note: The PEX-P32C32/P32A32/P64/C64 software is fully compatible with the PISO-P32C32/P64/C64 series software.

5.2.1 PEX/PISO-P32C32, PEX/PISO-P32A32 and PISO-P32S32WU Series

Step 4: Check the results of the **Digital Input/Output** functions test.

- 1. Click the "Digital Output" tab.
- 2. Select "Port0" from the "Port Number" drop-down menu.
- 3. Check the checkboxes for channels 0, 2, 4 and 6.

1 0 PISO-P32A32 (CARD ID:F)	- • ×
Analog Input Analog Output Digital Input Digital Output	ner/Counter Debug
3 7 6 5 <u>4</u> <u>3 2 1 0</u>	
	N(1)
	OFF(0)
2	
Port Number 0	
	<u>E</u> ×IT

- 4. Click the "Digital Input" tab.
- 5. Select "Port0" from the "Port Number" drop-down menu.
- 6. The DI indicators will turn **black** when the corresponding DO channels 0, 2, 4 and 6 are **ON**.

5.2.2 PEX/PISO-P64 Series

Step 4: Check the results of the Digital Input functions test.

- 1. Click the "Digital Input" tab.
- 2. Select "Port0" from the "Port Number" drop-down menu.
- 3. The corresponding DI becomes **black** for **channel 7 of DI_7 is ON**. The other DI_0 to DI_6 should become red because the DI_0 to DI_6 is OFF (Not wiring).

🖗 0 PISO-P64 (CARD ID:F)	- • ×
Analog Input Analog Output Digital Input Digital Output Timer/Counter	Debug
	ON(1)
B	OFF(0)
2	
Port Number 0 HEX 7F	
	<u>e</u> xit

5.2.3 PEX/PISO-C64 and PISO-A64 Series

Step 4: Check the results of the Digital Output functions test.

- 1. Click the "Digital Output" tab.
- 2. Select "Port0" from the "Port Number" drop-down menu.
- 3. Check the checkboxes for **channel 2**.

1 PISO-C64 (CARD ID:0)	
Analog Input Analog Output Digital Input Digital Output mer/Counter	Debug
	ON(1)
3	DFF(0)
2	
Port Number 0	
<u>E</u> ×IT	

4. Check the channel 2 (DO_2) output LED state for high.

🖗 1 PISO-C64 (CARD ID:0)		
Analog Input Analog Output Digital Input	<u>Digital Output</u> Timer/Counter Debug	
765432	0N(1)	
Port Number 0	НЕХ 04	4

6. I/O Control Register

6.1 How to Find the I/O Address

During the power-on stage, the Plug and Play BIOS will assign an appropriate I/O address to each PEX/PISO-P32x32/x64 Series board installed in the system. Each board includes four fixed ID numbers that are used to identify the board, and are indicated below:

OLD Version (Vendor ID= 0xE159, Device ID= 0x02)				
Model Name	Sub-Vender	Sub-Device	Sub-Aux	Version
PISO-C64(U)	0x80	0x08	0x00	1.0 ~ 3.0
PISO-P64(U)	000	000	010	10020
PISO-P64U-24V	0x80	UXU8	0110	1.0 ~ 3.0
PISO-P32C32(U)				1.0 - 1.0
PISO-P32C32U-5V	0x80	0x08	0x20	1.0 ~ 4.0
PISO-P32S32WU				1.4
PISO-A64	0x80	0x08	0x50	1.0 ~ 2.0
PISO-P32A32(U)	000	000	070	10020
PISO-P32A32U-5V	UX8U	UXU8	Ux70	1.0 2.0

Table 6-2:

Table 6-1:

News Version (Vendor ID= 0xE159, Device ID= 0x01)				
Model Name	Sub-Vender	Sub-Device	Sub-Aux	Version
PISO-C64(U)	0,0280	0×00	0,400	1.0
PEX-C64	0x0280	UXUU	0x00	4.0
PISO-P64(U) (-24V)	0.4280	0×00	0×10	
PEX-P64	0x4280	UXUU	0110	4.4
PISO-P32C32(U) (-5V)				
PEX-P32C32	0x4280	0x00	0x20	5.5
PISO-P32S32WU				1.4
PISO-A64	0x8280	0x00	0x50	3.0
PISO-P32A32(U)				
PEX-P32A32	0xC280	0x00	0x70	4.0 and later
PISO-P32A32U-5V				

<u>PIO PISO.EXE Utility for the Windows</u>

The PIO_PISO.EXE utility program will detect and present all information for ICPDAS I/O boards installed in the PC, as shown in the following Figure6-1. Details of how to identify the PEX/PISO-P32x32/x64 Series board of ICPDAS data acquisition boards based on the **Sub-vendor**, **Sub-device** and **Sub-Aux ID** are given in Tables 6-1 to 6-2.

The **PIO_PISO.exe** utility is located on the CD as below and is useful for all PISO-DIO series boards. (CD:\NAPDOS\PCI\Utility\Win32\PIO_PISO\)

http://ftp.icpdas.com/pub/cd/iocard/pci/napdos/pci/utility/win32/pio_piso/

We provide all necessary functions as follows:

- 1. PIO_DriverInit(&wBoard, wSubVendor, wSubDevice, wSubAux)
- PIO_GetConfigAddressSpace(wBoardNo,*wBase,*wIrq, *wSubVendor,*wSubDevice, *wSubAux, *wSlotBus, *wSlotDevice)
- 3. Show_PIO_PISO(wSubVendor, wSubDevice, wSubAux)

All functions are defined in PISODIO.H. Refer to <u>Section 6.3</u> for more information. The important driver information is given as follows:

- Allocated resource information:
- wBase : BASE address mapping in this PC
- wirg: Allocated IRQ channel number of this board in this PC
- PIO/PISO identification information:
- wSubVendor: subVendor ID of this board
- wSubDevice: subDevice ID of this board
- wSubAux: subAux ID of this board
- PC's physical slot information:
- **wSlotBus:** The bus number of the slot used by this board.
- **wSlotDevice:** The device number of the slot used by this board.

6.1.1 PIO_DriverInit

PIO_DriverInit(&wBoards, wSubVendor,wSubDevice,wSubAux)

wBoards=0 to N	\rightarrow	Number of boards found in this PC
wSubVendor	\rightarrow	SubVendor ID of board you are seeking
wSubDevice	\rightarrow	SubDevice ID of board you are seeking
wSubAux	\rightarrow	SubAux ID of board to you are seeking

This function can detect all PIO/PISO series boards with your system. Implementations are based on the PCI plug and play mechanism-1. It will find all PIO/PISO series boards installed in this system and save all their resource in the library.

• Find all PIO/PISO boards in this PC:

```
/* Step 1: Detect all PIO/PISO series boards in this PC */
 wRetVal=PIO_DriverInit(&wBoards, 0xff, 0xff, 0xff); /*Find all PIO_PISO*/
 printf("\nThere are %d PIO_PISO Cards in this PC", wBoards);
 if (wBoards==0) exit(0);
 /* Step2: Save resources for all PIO/PISO boards installed in this PC */
printf("\n-----");
for(i=0; i<wBoards; i++)
  {
    PIO GetConfigAddressSpace(i, &wBase, &wIrg, &wSubVendor, &wSubDevice,
     &wSubAux, &wSlotBus, &wSlotDevice);
     printf("\nCard %d:wBase=%x,wIrq=%x,subID=[%x,%x,%x],
                 SlotID=[%x,%x]",i,wBase,wIrq,wSubVendor,wSubDevice,
                 wSubAux,wSlotBus,wSlotDevice);
    printf(" --> ");
    ShowPioPiso(wSubVendor,wSubDevice,wSubAux);
   }
```

• Find all PEX-P32C32/P32A32 and PISO-P32C32/P32S32WU/P32A32 series boards in this PC:

• Find all PEX-P64 and PISO-P64 series boards in this PC:

Find all PEX-C64 and PISO-C64/A64 series boards in this PC:

```
/* Step1: Detect all PISO-C64 boards first */
wSubVendor=0x80; wSubDevice=0x08; wSubAux=0x00; /* for PISO-C64 */
wRetVal=PIO_DriverInit(&wBoards, wSubVendor,wSubDevice,wSubAux);
printf("There are %d PISO-C64 Cards in this PC\n",wBoards);
/* Step2: save resource of all PISO-C64/A64 boards installed in this PC */
for (i=0; i<wBoards; i++)
{
    PIO_GetConfigAddressSpace(i,&wBase,&wIrq,&wID1,&wID2,&wID3,&wID4, &wID5);
    printf("\nCard_%d: wBase=%x, wIrq=%x", i, wBase, wIrq);
    wConfigSpace[i][0]=wBaseAddress; /* save all resource of this board */
    wConfigSpace[i][1]=wIrq; /* save all resource of this board*/
}</pre>
```

6.1.2 PIO_GetConfigAddressSpace

PIO_GetConfigAddressSpace(wBoardNo,*wBase,*wIrq,

```
*wSubVendor,*wSubDevice, *wSubAux, *wSlotBus,*wSlotDevice)
```

wBoardNo=0 to N	\rightarrow	Totally N+1 boards found by PIO_DriveInit()
wBase	\rightarrow	Base address of the board control word
wlrq	\rightarrow	Allocated IRQ channel number of this board
wSubVendor	\rightarrow	The subVendor ID of this board
wSubDevice	\rightarrow	The subDevice ID of this board
wSubAux	\rightarrow	The subAux ID of this board
wSlotBus	\rightarrow	The bus number of the slot used by this board
wSlotDevice	\rightarrow	The device number of the slot used by this board

The user can use this function to save resource information of all PIO/PISO boards installed in this system. Then the application program can directly control all functions of the PIO/PISO series board.

• Find the configure address space for PEX/PISO-P32C32/P32S32WU/P32A32 series card:

 Find the configure address space of PEX/PISO-P64 series board: 				
/* Step1: Detect all PISO-P64 boards firs	t */			
wSubVendor=0x80; wSubDevice=0x08	; wSubAux=0x10; /* for PISO_P64 */			
wRetVal=PIO_DriverInit(&wBoards, wS	ubVendor,wSubDevice,wSubAux);			
printf("There are %d PISO-P64 Cards in	this PC\n",wBoards);			
/* Step2: Save resource of all PISO-P64	boards installed in this PC */			
for (i=0; i <wboards; i++)<="" td=""><td></td></wboards;>				
{				
PIO_GetConfigAddressSpace(i,&w	Base,&wlrq,&t1,&t2,&t3,&t4,&t5);			
printf("\nCard_%d: wBase=%x, wIr	q=%x", i,wBase,wIrq);			
wConfigSpace[i][0]=wBaseAddress	; /* save all resource of this board*/			
wConfigSpace[i][1]=wIrq;	/* save all resource of this board*/			
}				
/* Step3: Control the PISO-P64 directly	*/			
wBase=wConfigSpace[0][0];	/* get base address the card_0 */			
outport(wBase,1);	/* enable all D/I/O operation of card_0 */			
wBase=wConfigSpace[1][0];	/* get base address the card_1 */			
outport(wBase,1);	/* enable all D/I/O operation of card_1 */			

Find the configure address space of PEX/PISO-C64 and PISO-A64 series board:

outport(wBase,1);	/* enable all D/I/O operation of card_1 */	
wBase=wConfigSpace[1][0];	/* get base address the card_1 */	
outport(wBase,1);	/* enable all D/I/O operation of card_0 */	
wBase=wConfigSpace[0][0];	/* get base address the card_0 */	
/* Step3: Control the PISO-C64/A64 dir	rectly */	
}		
wConfigSpace[i][1]=wIrq;	<pre>/* save all resource of this board*/</pre>	
wConfigSpace[i][0]=wBaseAddress	; /* save all resource of this board*/	
printf("\nCard_%d: wBase=%x, wIr	ˈq=%x", i,wBase,wIrq);	
PIO_GetConfigAddressSpace(i,&w	Base,&wlrq,&t1,&t2,&t3,&t4,&t5);	
{		
for (i=0; i <wboards; i++)<="" td=""><td></td><td></td></wboards;>		
/* Step2: Save resource of all PISO-C64	<pre>/A64 boards installed in this PC */</pre>	
printf("There are %d PISO-C64 Cards in	this PC\n",wBoards);	
wRetVal=PIO_DriverInit(&wBoards, wS	ubVendor,wSubDevice,wSubAux);	
wSubVendor=0x80; wSubDevice=0x08	; wSubAux=0x50;	
wSubVendor=0x80; wSubDevice=0x08	3; wSubAux=0x00;	
/* Step1: Detect all PISO-C64 boards fi	rst */	

6.1.3 Show_PIO_PISO

Show_PIO_PISO(wSubVendor, wSubDevice, wSubAux)

wSubVendor	\rightarrow	subVendor ID of board you are seeking
wSubDevice	\rightarrow	subDevice ID of board you are seeking
wSubAux	\rightarrow	subAux ID of board you are seeking

This function will show a text string for these special subIDs. This text string is the same as defined in PISODIO.H

The demo program is as follows:

6.2 The Assignment of I/O Address

The Plug and Play BIOS will assign the proper I/O address to a PIO/PISO series card. If there is only one PIO/PISO board, the user can identify the board as card_0. If there are two PIO/PISO boards in the system, it is very difficult to identify which board is card_0. The software driver can support a maximum of 16 boards. Therefore, the user can install 16 PIO/PSIO series cards onto one PC system. The methods used to find and identify card_0 and card_1 is demonstrated below.

The simplest way to identify which card is card_0 is to use wSlotBus and wSlotDevice in the following manner:

Step 1: Remove all PEX/PISO-P32x32/x64 Series board from the PC.

- Step 2: Install one PEX/PISO-P32x32/x64 Series board into the PC's PCI_slot1, run PIO_PISO.EXE. Then record the "wSlotBus1" and "wSlotDevice1" information in the "Locating/Resource" area.
- **Step 3:** Remove all PEX/PISO-P32x32/x64 Series board from the PC.
- Step 4: Install one PEX/PISO-P32x32/x64 Series board into the PC's PCI_slot2 and run PIO_PISO.EXE. Then record the "wSlotBus1" and "wSlotDevice1" information in the "Locating/Resource" area.
- Step 5: Repeat Steps(3) and (4) for every PCI_slot and record all information from "wSlotBus1" and "wSlotDevice1".

ne records may look similar to the table follows:		
	Locating/Resource	
	wSlotBus (Bus#)	wSlotBus (Device#)
Slot_1	0	0x07
Slot_2	0	0x08
Slot_3	0	0x09
Slot_4	0	0x0A
PCI-BRIDGE		
Slot_5	1	0x0A
Slot_6	1	0x08
Slot_7	1	0x09
Slot_8	1	0x07

The records may look similar to the table follows:

The above procedure will record all the "wSlotBus" and "wSlotBus" information on a PC. These values will be mapped to this PC's physical slot and this mapping will not be changed for any PIO/PISO cards. Therefore, this information can be used to identify the specified PIO/PISO card by following steps:

Step1: Using the "wSlotBus" and "wSlotDevice" information from Table 6-4.

Step2: Enter the board number into PIO_GetConfigAddressSpace(...) function to get the information for a specific card, especially the "wSlotBus" and "wSlotDevice" details.
Step3: Identify the specific PIO/PISO card by comparing the data of the "wSlotBus" and "wSlotDevice" from Step1 and Step2.

Note that normally the card installed in slot 0 is card0 and the card installed in slot1 is card1 for PIO/PISO series cards.

6.3 Enabling I/O Operation

When the PC is first powered-on, DI/DO operations are disabled. The enable/disable of DI/DO is controlled by the RESET\ signal. The powered-on states are given as follows:

- All DI/DO operations are disabled
- All DO latch registers are clear

The DI/DO ports must be enabled by program before using. For example:

Step 1: Enable all DI/DO operation.

Step 2: Read from DI or write to DO

Refer to DEMO1.C for DOS demo program.

6.4 The I/O Address Map

The I/O address of the PIO/PISO series board is automatically assigned by the main board ROM BIOS. The I/O address can also be re-assigned by the user, but it is strongly recommended that the I/O address is not changed by user. The Plug and Play BIOS will assign an appropriate I/O address to each PIO/PISO series board. The I/O addresses of the PEX/PISO-P32x32/x64 Series boards are as follows, and are based on the base address of each board.

6.4.1 I/O Mapping for the PISO-P32x32 Series

Address	Read	Write
Wbase+0	-	RESET\ control register
Wbase+2	Same	Aux control register
Wbase+3	Same	Aux data register
Wbase+5	Same	INT mask control register
Wbase+7	Aux pin status register	-
Wbase+0x2a	Same	INT polarity control register
Wbase+0xc0	Read data from DI_0 ~ DI_7	Write data to DO_0 to DO_7
Wbase+0xc4	Read data from DI_8 ~ DI_15	Write data to DO_8 to DO_15
Wbase+0xc8	Read data from DI_16 ~ DI_23	Write data to DO_16 to DO_23
Wbase+0xcc	Read data from DI_24 ~ DI_31	Write data to DO_24 to DO_31
Wbase+0xe0	Read DO_0 to DO_7 Readback	-
Wbase+0xe4	Read DO_8 to DO_15 Readback	-
Wbase+0xe8	Read DO_16 to DO_23 Readback	-
Wbase+0xec	Read DO_24 to DO_31Readback	-
Wbase+0xd0	Read the Card ID	-

The I/O addresses are mapped for PISO-P32C32(U)(-5V)/P32S32WU/P32A32(U)(-5V) and PEX-P32C32/P32A32 Series board, as follows:

Note: Refer to <u>Sec. 6.1</u> for more information about wBase.
Digital Output/Digital Input:

outportb(wBase+0xc0,Val); outportb(wBase+0xc4,Val); outportb(wBase+0xc8,Val); outportb(wBase+0xcc,Val);

Val=inportb(wBase+0xc0); Val=inportb(wBase+0xc4); Val=inportb(wBase+0xc8); Val=inportb(wBase+0xcc);

- - /* read from DI 0~7 */ /* read from DI 8~15 */ /* read from DI 16~23 */ /* read from DI 24~31 */

DO Readback Register:

Val=inportb(wBase+0xe0); Val=inportb(wBase+0xe4); Val=inportb(wBase+0xe8); Val=inportb(wBase+0xec); /* read DO Readback from DO 0~7 */
/* read DO Readback from DO 8~15 */
 /* read DO Readback from DO 16~23 */
 /* read DO Readback from DO 24~31 */

Card ID Register:

wCardID = inportb(wBase+0xD0);

/* read Card ID(0x0~0x15) */

Note: The CardID function supports the following models: PEX-P32C32, PISO-P32C32U(-5V) (Ver1.1 or above), PISO-P32S32WU(Ver 1.5 or above), PEX-P32A32 and PISO-P32A32U(-5V).

6.4.2 I/O Mapping for the PISO-P64 Series

The I/O addresses are mapped for PISO-P64(U)(-24V) and PEX-P64 Series board, as follows:

Address	Read	Write
wBase+0	-	RESET\ control register
wBase+2	Same	Aux control register
wBase+3	Same	Aux data register
WBase+5	Same	INT mask control register
Wbase+7	Aux pin status register	-
Wbase+0x2a	Same	INT polarity control register
Wbase+0xc0	Read data from DI_0 ~ DI_7	Reserved
Wbase+0xc4	Read data from DI_8 ~ DI_15	Reserved
Wbase+0xc8	Read data from DI_16 ~ DI_23	Reserved
Wbase+0xcc	Read data from DI_24 ~ DI_31	Reserved
WBase+0xd0	Read data from DI_32 ~ DI_39	Reserved
WBase+0xd4	Read data from DI_40 ~ DI_47	Reserved
WBase+0xd8	Read data from DI_48 ~ DI_55	Reserved
WBase+0xdc	Read data from DI_56 ~ DI_63	Reserved
WBase+0xf0	Read the Card ID	-

Note: Refer to <u>Sec. 6.1</u> for more information about wBase.

Digital Input: \succ

Val=inportb(wBase+0xc0);	/* read from DI 0~7	*/
Val=inportb(wBase+0xc4);	/* read from DI 8~15	*/
Val=inportb(wBase+0xc8);	/* read from DI 16~23 */	,
Val=inportb(wBase+0xcc);	/* read from DI 24~31 */	'
Val=inportb(wBase+0xd0);	/* read from DI 32~39	*/
Val=inportb(wBase+0xd4);	/* read from DI 40~47	*/
Val=inportb(wBase+0xd8);	/* read from DI 48~55	*/
Val=inportb(wBase+0xdc);	/* read from DI 56~63	*/

Card ID Register:

CardID = inportb(wBase+0xF0); /* read Card ID(0x0~0x15) */

Note: The PEX-P64 and PISO-P64U(-24V) (Ver1.0 or above) supports the Card ID function.

6.4.3 I/O Mapping for the PISO-C64/A64 Series

The I/O addresses are mapped for PEX-C64 and PISO-C64(U)/A64 Series board, as follows:

Address	Read	Write
wBase+0	-	RESET\ control register
wBase+2	Same	Aux control register
wBase+3	Same	Aux data register
wBase+5	Same	INT mask control register
wBase+7	Aux pin status register	-
wBase+0x2a	Same	INT polarity control register
wBase+0xc0	Read DO_0 to DO_7 Readback	Write data to DO_0 to DO_7
wBase+0xc4	Read DO_8 to DO_15 Readback	Write data to DO_8 to DO_15
wBase+0xc8	Read DO_15 to DO_23 Readback	Write data to DO_16 to DO_23
wBase+0xcc	Read DO_24 to DO_31 Readback	Write data to DO_24 to DO_31
wBase+0xd0	Read DO_32 to DO_39 Readback	Write data to DO_32 to DO_39
wBase+0xd4	Read DO_40 to DO_47 Readback	Write data to DO_40 to DO_47
wBase+0xd8	Read DO_48 to DO_55 Readback	Write data to DO_48 to DO_55
wBase+0xdc	Read DO_56 to DO_63 Readback	Write data to DO_56 to DO_63
WBase+0xf0	Read the Card ID	-

Note: Refer to <u>Sec. 6.1</u> for more information about wBase.

> Digital Output:

outportb(wBase+0xc0,Val);	/* write to DO 0~7 */
outportb(wBase+0xc4,Val);	/* write to DO 8~15 */
outportb(wBase+0xc8,Val);	/* write to DO 16~23 */
outportb(wBase+0xcc,Val);	/* write to DO 24~31 */
outportb(wBase+0xd0,Val);	/* write to DO 32~39 */
outportb(wBase+0xd4,Val);	/* write to DO 40~47 */
outportb(wBase+0xd8,Val);	/* write to DO 48~55 */
outportb(wBase+0xdc,Val);	/* write to DO 56~63 */

DO Readback Register:

Val=inportb(wBase+0xc0); Val=inportb(wBase+0xc4); Val=inportb(wBase+0xc8); Val=inportb(wBase+0xcc);

Val=inportb(wBase+0xd0); Val=inportb(wBase+0xd4); Val=inportb(wBase+0xd8); Val=inportb(wBase+0xdc); /* read DO Readback from DO 0~7 */
/* read DO Readback from DO 8~15 */
/* read DO Readback from DO 16~23 */
/* read DO Readback from DO 24~31 */

/* read DO Readback from DO 32~39 */ /* read DO Readback from DO 40~47 */ /* read DO Readback from DO 46~55 */ /* read DO Readback from DO 56~63 */

Card ID Register:

$CardiD = Inportb(WBase+0xF0);$ /* read Card ID(0x0 $^{-}0x15)$ */	ID = inportb(wBase+0xF0);	/* read Card ID(0x0~0x15)	*/
--	---------------------------	---------------------------	----

Note: The PEX-C64 and PISO-C64U (Ver1.0 or above) supports the Card ID function.

6.4.4 RESET\ Control Register

(Read/Write): wBase+0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
Reserved	RESET\						

When the PC is first powered-on, the RESET\ signal is in Low-state. **This will disable all DI/DO operations.** The user has to set the RESET\ signal to High-state before any DI/DO commands are given.

outportb(wBase,1);	/*	RESET\ = High \rightarrow all DI/DO are enabled now */
outportb(wBase,0);	/*	RESET\ = Low \rightarrow all DI/DO are disabled now */

6.4.5 AUX Control Register

(Read/Write): wBase+2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
Aux7	Aux6	Aux5	Aux4	Aux3	Aux2	Aux1	Aux0

Aux?=0 \rightarrow this Aux is used as a DI Aux?=1 \rightarrow this Aux is used as a DO

When the PC is first powered-on, All Aux? signals are in Low-state. All Aux? are designed as DI for all PIO/PISO series boards. Please set all Aux? to DI state.

6.4.6 AUX Data Register

(Read/Write): wBase+3

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
Aux7	Aux6	Aux5	Aux4	Aux3	Aux2	Aux1	Aux0

When the Aux? is used as DO, the output state is controlled by this register. This register is designed for future applications, Please do not change this register.

6.4.7 INT Mask Control Register

(Read/Write): wBase+5

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0	0	0	0	0	0	0	0

This register is designed for future applications, Please do not change this register.

6.4.8 AUX Status Register

(Read): wBase+7

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
Aux7	Aux6	Aux5	Aux4	Aux3	Aux2	Aux1	Aux0

Aux0-3=reserved, aux4-7=Aux-ID.

7. The Digital I/O Applications

7.1 PISO-P32x32 Series Board

Figure 7-1-1: Digital Inputs/Outputs for PEX-P32C32/P32A32 and PISO-P32C32/P32S32WU/P32A32.

- Figure 7-1-2 (P32C32/P32S32WU) shows the circuit diagram of external device 1
- Figure 7-1-3 (P32A32) shows the circuit diagram of external device 1
- Figure 7-1-4 (P32C32/P32S32WU) shows the circuit diagram of external device 2
- Figure 7-1-5 (P32A32) shows the circuit diagram of external device 2

7.1.1 The Circuit Diagram of Digital Output

Here's the circuit diagram for external device 1:

Figure 7-1-2: The circuit diagram of external device 1 for the digital outputs of PEX-P32C32 and PISO-P32C32/P32S32WU series board.

Figure 7-1-3: The circuit diagram of external device 1 for the digital outputs of PEX-P32A32 and PISO-P32A32 series board.

- Resistance for R1~ R16 is 330 Ohm.
- LEDs 1-6 are light-emitting diodes.
- Pin-1/20 are the GND signal for DI<0...15> and DO<0...15>.
 Pin-1/18/19/20 are the GND signal for PISO-P32S32WU DI<0...15> and DO<0...15>.
- Pin-18/37 are the voltage (+) signal for DI<0...15> and DO<0...15> (input 9 \sim 24 V_{DC}).
- Pin-37 are the voltage (+) signal for PISO-P32S32WU DI<0...15> and DO<0...15> (input 9 $^{\sim}$ 24 V_{DC}).

Here's the circuit diagram for external device 2:

Figure 7-1-5: The circuit diagram of external device 2 for the digital outputs of PEX-P32A32 and PISO-P32A32 series board.

- Resistance for R17~ R32 is 330 Ohm.
- LEDs 17~32 are light emitting diodes.
- Pin-1/20 are the GND signal for DI<16...31> and DO<16...31>.
 Pin-1/18/19/20 are the GND signal for PISO-P32S32WU DI<16...31> and DO<16...31>.
- Pin-18/37 are the voltage (+) signal for DI<16...31> and DO<16...31> (input 9 ~ 24 V_{DC}).
 Pin-37 are the voltage (+) signal for PISO-P32S32WU DI<16...31> and DO<16...31> (input 9~ 24 V_{DC}).

7.1.2 The Circuit Diagram of Digital Input

- The DI of CON1 for PEX-P32C32/P32A32 and PISO-P32C32/P32A32 is set to internal power.
- Pin-19 is the GND signal for DI<0...15>.
- Pin-18 is the voltage (+) signal for DI<0...15> (input 9 ~ 24 V_{DC}).

Figure 7-1-7: The circuit diagram of external device 2 for the DI of PEX-P32C32/P32A32 and PISO-P32C32/P32A32 series board.

- The DI of CON2 of PEX-P32C32/P32A32 and PISO-P32C32/P32A32 is set to external power.
- Pin-19 is the GND signal for DI<16...31>.
- Pin-18 is the voltage (+) signal for DI<16...31> (input 9 ~ 24 VDC).

7.2 PEX/PISO-P64 Series

7.2.1 The Circuit Diagram of Digital Input

Figure 7-2-1: Digital inputs for PEX-P64 and PISO-P64 series board.

- Refer to Figure 7-2-2 for the circuit diagram of external device 1.
- Refer to Figure 7-2-3 for the circuit diagram of external device 2.

Here's the circuit diagram for external device 1:

• The DI of CON1 of PISO-P64 series is set to internal power.

Here's the circuit diagram for external device 2:

• The DI of CON2 of PISO-P64 series is set to internal power.

7.3 PEX/PISO-C64 and PISO-A64 Series

7.3.1 The Circuit Diagram of Digital Output

Figure 7-3-1: The example of digital outputs for PEX-C64 and PISO-C64/A64 series board.

- Refer to Figure 7-3-2 (C64 series) for the circuit diagram of external device 1.
- Refer to Figure 7-3-3 (A64) for the circuit diagram of external device 1.
- Refer to Figure 7-3-4 (C64 series) for the circuit diagram of external device 2.
- Refer to Figure 7-3-5 (A64) for the circuit diagram of external device 2.

Here's the circuit diagram for external device 1:

Figure 7-3-2: The circuit diagram of external device 1 for the digital outputs of PEX-C64 and PISO-C64 series board.

- The resistance of R1~R32 is 330 Ohm.
- LEDs 1~32 are light-emitting diodes.
- Pin-1/20 are GND signal for DO<0...15> and DO<16...31>.
- Pin-18/37 are voltage (+) signal for DO<0...15> and DO<16...31> (input 5 V 2 4 V_{DC}).

Figure 7-3-3: The circuit diagram of external device 1 for the digital outputs of PISO-A64 board.

- The resistance of R1~R32 is 330 Ohm.
- LEDs 1~32 are light-emitting diodes.
- Pin-1/20 are GND signal for DO<0...15> and DO<16...31>.
- Pin-18/37 are voltage(+) signal for DO<0...15> and DO<16...31> (input 5 \sim 24 V_{DC}).

Here's the circuit diagram for external device 2:

- The resistance of R33~R64 is 330 Ohm.
- LEDs 33~64 are light-emitting diodes.
- Pin-1/20 are GND signal for DO<32...47> and DO<48...63>.
- Pin-18/37 are voltage(+) signal for DO<32...47> and DO<32...63> (input 5 \sim 24 V_{DC}).

- The resistance of R33~R64 is 330 Ohm.
- LEDs 1~32 are light-emitting diodes.
- Pin-1/20 are GND signal for DO<32...47> and DO<48...63>.
- Pin-18/37 are voltage(+) signal for DO<32...47> and DO<48...63> (input 5~24 V_{DC}).

8. Demo Program

PEX/PISO-P32x32/x64 Series board provides Digital Input/Output demo programs, together with the source code for the library, that can be used in either a Windows or a DOS environment, based on a variety of programming languages, including TC/BC/MSC (DOS), Borland C++, Delphi, Visual Basic, Visual C, VB.NET 2005, and C#.NET2005, etc. (Windows).

Detailed information about the demo programs is provided below.

Sample Program	UniDAQ SDK/Driver	PISO-DIO Series Class Driver	DOS
тс	-	-	✓
BC	-	-	✓
MSC	-	-	✓
Borland C ⁺⁺ Builder 4	-	✓	-
Borland C ⁺⁺ Builder 6			-
Delphi 4	-	✓	-
Delphi 6	✓	-	-
Visual Basic 6	✓	✓	-
Visual C ⁺⁺ 6	✓	\checkmark	-
VB.NET 2005 (32-bit)	✓	\checkmark	-
VB.NET 2005 (64-bit)	✓	-	-
C#.NET 2005 (32-bit)	✓	\checkmark	-
C#.NET 2005 (64-bit)	✓	-	-
VC.NET 2005 (32-bit)	✓	-	-
VC.NET 2005 (64-bit)	✓	-	_
MATLAB	✓	-	-
LabVIEW	\checkmark	✓	-

Appendix: Daughter Board

A1. DB-37

The DB-37 is a general purpose daughter board for D-sub 37 pins. It is designed for easy wire connection via pin-to-pin.

A2. DN-37

The DN-37 is a general purpose daughter board for DB-37 pins with DIN-Rail Mountings. They are also designed for easy wire connection via pin-to-pin.

A3. DB-8125

The DB-812 is a general-purpose screw terminal board. It is designed for easy wiring connection. The DB-8125 consists of one DB-37 and two 20-pin flat-cable headers.

